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Abstract 
Rotation functions between Patterson functions can 
be calculated and analyzed more efficiently when it 
is possible to consider only a unique or asymmetric 
region of rotation space. Previous authors have suc- 
ceeded in characterizing the symmetries and asym- 
metric units of rotation functions between Patterson 
functions whose symmetries are less than cubic. Here 
we describe a simple and general solution that applies 
to rotation functions between Patterson functions of 
any symmetry, including cubic. The method relies on 
partitioning rotation space into Dirichlet domains. 

Introduction 
The relative orientation between the molecules in a 
crystal and either a molecular model or a similar 
molecule in a different crystal form can often be 
determined in the absence of phase information by 
use of a rotation function (reviewed by Rossmann, 
1972; Lattman, 1985), which is essentially an overlap 
integral between two Patterson functions as a function 
of their relative orientation. The rotational sym- 
metries of the Patterson functions being compared 
lead to symmetry or redundancy in the rotation func- 
tion if it is calculated over all of rotation space. In 
implementations of the rotation function that are 
computationally intensive, it is useful to be able to 
perform the calculation only over a region of rotation 
space that is unique to avoid wasteful duplication. 
Even in implementations such as the fast rotation 
function (Crowther, 1972) where the calculation can 
be performed quickly over all space, an understand- 
ing of the symmetry of the resulting rotation function 
is critical in analyzing the output. For example, one 
must be able to determine which of the function peaks 
are unique and which are related to others by sym- 
metry.* Again, this is most easily accomplished if the 
rotation function can be divided into asymmetric or 
unique regions that contain no duplication. Several 
authors have treated this problem successfully for 

* Rotation-function peaks related by cubic symmetry may not 
have identical magnitudes, since sampling occurs on an Eulerian 
grid that does not obey cubic symmetry. 

0108-7673/93/010138-04506.00 

rotation functions between Patterson functions whose 
symmetries are less than cubic (Tollin, Main & 
Rossmann, 1966; Rao, Jih & Hartsuck, 1980; Moss, 
1985). Tollin et al. (1966) pointed out the problem of 
nonlinearity in the cubic case when the rotations are 
parameterized by Euler angles and Burdina (1970) 
provided a partial solution for one specific cubic case 
by describing a region of rotation space that was 
larger than the desired asymmetric unit by a factor 
of 1.6. 

Here we describe a simple and complete solution 
to the problem for any symmetries, based on Dirichlet 
domains (Coxeter, 1961), and show that the boun- 
daries of the asymmetric units are in fact linear in 
terms of the rotation-matrix elements. 

Derivation 
A set of points, V, in space can be used to divide that 
space into convex regions called Dirichlet domains 
or Voronoi polyhedra (Coxeter, 1961). Each point in 
space is assigned to a domain according to which 
point in V it is nearest. The boundary between two 
adjacent domains in a plane is the perpendicular 
bisector of the line segment joining the respective 
points in V. If the space has space-group symmetry 
and the points in V are all related by symmetry, then 
the space becomes divided into crystallographically 
equivalent domains, each one representing an asym- 
metric unit of the space. An example for the two- 
dimensional plane group p2gg is shown in Fig. 1. 
Dirichlet domains can also be used to partition three- 
dimensional rotation space with the distance between 
two rotations defined, according to Lattman (1972), 
as the magnitude of the angular rotation that separates 
them. The following analysis shows that this method 
of division is especially powerful for dividing a rota- 
tion function relating two Patterson functions into 
unique or asymmetric regions of space. 

( A ) Symmetry-equivalent points in rotation space 

Let the rotation function, F, between a fixed 
Patterson function, P~(x), and a rotated Patterson 
function, P2(Rx), be written as a function of the 
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rotation R, 

F (R)  =~ P,(x)P2(Rx)dx (1) 

with the integration performed over a spherical 
region. If iS are the n elements of the proper rotation- 
symmetry group of P~ and JT are the m elements of 
the symmetry group of P2, then 

P,(x) = P,( 'Sx) (2) 

and 

/:'2(Rx) = P2[ R(JT)x]. 

Equations (1), (2) and (3) give 

(3) 

F ( R )  =~ P,('Sx)P2[R(JT)x]dx. (4) 

Since both functions P~ and P2 can be rotated simul- 
taneously by iS-~ without affecting the integral, 

F (R)  =~ P,(x)P2['S-'R(JT)x]dx. (5) 

Comparing (1) and (5) and dropping the inverse 
notation,* one obtains 

F ( R ) =  F['SR(JT)]. (6) 

Equation (6) describes the symmetry of the rotation 
function, F, in rotation space; equivalent equations 
were described by Tollin et al. (1966), Burdina (1970) 
and Moss (1985). 

* ('S) -t must also be an element of S. 

, f !  , ~ ! i ~ I  • ! k '  

-1 . . . . . . . . . .  

' I ! • ~ ' 4  ! • 
' k ' I , I ,  , 

i , y  , , x (  
i . i ~  i . i J  

Cl " :  • 

' - , T ~ T  - 
i I o l  r ' ~  o 

,, ' ix c ,  ~ . . . .  ~ . . . .  

I ! 

I I 

" -  I - - -  I 

"h! 
_ . d  . . . . . . . . . . . . .  d _  

,~) ', 

Fig. 1. Division of  a plane with p2gg plane-group symmetry into 
Dirichlet domains, each of which represents an asymmetric unit. 
The plane is partitioned according to the shortest distance to 
one of the symmetry-related points shown by solid circles. The 
glide planes are indicated by dashed lines. 

Given an arbitrary* rotation, Q, the set of n x m 
rotations 'SQ(JT) constitute a set of points in rotation 
space that are related by rotation-function symmetry. 
These points will be the Dirichlet points, V, which 
partition rotation space into n x m unique regions. 

( B ) Distance in rotation space 

The difference, D, in rotation space between two 
rotations ~R and 2R may be written as 

2 R = D ( ' R ) ;  D = 2 R ( ' R ) - ' = 2 R ( ' R )  T. (~I) 

If D is represented as a matrix, then the angular 
distance, K, between ~R and 2R satisfies 

1 +2  cos K =tr(D)=tr[2R(~R)r] ,  (8) 

where tr denotes the trace (i. e. the sum of the diagonal 
elements). Furthermore, since the trace of a product 
is equal to the sum of the products of all correspond- 
ing elements [tr (AB) = ~o AoBji], 

1 +2  cos K = ~ 2Rkl(IRkl ). (9) 
kl 

Note that a small angular difference, K, corresponds 
to a large value of the contracted product 
Ekl 2Rkl('Rkt). 

( C ) Partitioning rotation-function space 

Equation (9) allows us to calculate with ease the 
angular distance K between an arbitrary rotation R 
and each of the symmetry-related rotations "SQ(JT), 
the elements of V. If the members of V are denoted 
by 

'W: 'SQ(JT) ,  (10) 

then assigning an arbitrary rotation R to a domain 
simplifies to the problem of finding the member  of 
V, i W, for which the corresponding angular distance 
K is a minimum or, by (8), for which 

~. iVJktRkt is a m a x i m u m .  ( 1 1 )  
kl  

A particular asymmetric region (i, j )  of rotation space 
is therefore defined by a set of inequalities that are 
linear in terms of the rotation-matrix elements, Rkt, 

~'V~klRkl>~PVqkiRkl (p ,q~ i , j ) .  (12) 
kl  k l  

(D) Cross-rotation function with a model Patterson 
function 

When one of the Patterson functions (say P2) has 
no rotational symmetry, we may choose the rotation 
Q, which generates the set V, to be the identity matrix 
and the members of V are simply the members of S 
by (10). For this case, the problem of partitioning 
rotation space into asymmetric units reduces to a 

* Restrictions on Q when Pt and P2 both have rotational sym- 
metry are discussed later. 
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question of  identifying which symmetry  operat ion,  
iS, gives the max imum value of  Y~kt (iS)kIRkt for each 
rotation R. Consider  as an example  a rotat ion func- 
tion between a model  Pat terson function and an 
observed Patterson funct ion with cubic octahedral  
symmetry.  If  rotation space is parameter ized in terms 
of  Eulerian angles, then, for each point  on a grid of  
angles, the rotation matr ix R can be calculated and 
classified into one of  the 24 Dirichlet domains  accord- 
ing to which one of  the 24 symmetry  operators  in S 
gives the largest contracted product  [(11)] with R. 
The rotation function would then only be evaluated 
(or reported)  for grid points that fell inside one pre- 
chosen domain.  Fig. 2 shows the part i t ioning of  rota- 
tion space in a section through Eulerian space for the 
case of  octahedral  symmetry.  

The method applies equally well to lower sym- 
metries. For  a rotat ion function between a model  
Patterson function with T symmetry  and a Patterson 
function in an axial or dihedral  group,  domain  boun- 
daries that are linear in terms of  Eulerian angles are 
obtained when Q is chosen with fl = 0. If  the sym- 
metric Pat terson function has a symmetry  axis of  
order  n parallel  to the z axis and Q is the identity 
rotation then one of  the Dirichlet domains  is 
described by 

- z r / n < - ( a  + T) <- 7r/n. (13) 

Note that a + 3/is equivalent  to the pseudo-Euler ian  
angle 0+ int roduced by Lat tman (1972). For  a dihe- 
dral group,  the domain  is fur ther  restricted to 0-< fl -< 
~r/2. 

( E ) Rotation function between two symmetric 
Patterson functions 

I f  the Pat terson functions P~ and P2 both have 
rotational symmetry  then the rotation Q may not be 

"f=360 

ct--O o t=360  

Fig. 2. Partitioning of rotation space as seen in a section of constant 
/3 (=60 °) for a rotation function between symmetries O (432) 
and C~. Rotation space is divided into 24 asymmetric regions 
or Dirichlet domains, 16 of which are visible in this section of 
Eulerian-angle space. 

chosen arbitrari ly,  since all ' W = ' S Q ( J T )  must  be 
unique. In part icular,  if P~ and P2 have any symmetry  
operat ions (other than the identity t ransformat ion)  
in common,  then Q cannot  be the identity matrix. 
For practical purposes ,  Q may be chosen to be a 
small rotat ion about  an oblique axis.* Given the 
choice of  Q, the members  of  V can be calculated 
according to (10) and points R in rotation space can 
be classified by (11) as before. The only real difference 
from the previous case is that  now the matrix elements 
of  ~V j are not general ly zero or unity but this presents 
no difficulty. Fig. 3 shows one possible part i t ioning 
of  rotation space in a section though Eulerian space 
for a cross-rotat ion function between Patterson func- 
tions with cubic te t rahedral  (n = 12) and Ca (m = 3) 
symmetries.  Different choices for the 'generat ing 
matr ix '  Q lead to different but equally valid parti t ion- 
ings of  rotat ion space. Q is a member  of  V and,  in 
fact, any member  of  V may be considered to be the 
matrix Q. 

For cross-rotat ion functions between Patterson 
functions with cyclic or dihedral  symmetry,  certain 
special choices for Q may produce domain  boun- 
daries that are l inear in terms of  Eulerian angles, but 
these domains  are general ly more complicated than 
those described by Rao et al. (1980) and Moss (1985). 
For cubic symmetry,  the domain  boundar ies  cannot  
be made  l inear in Eulerian space but they are still 
l inear in terms of  the rotat ion-matr ix  elements.  

( F) Self-rotation function 

Moss (1985) was the first to point  out the addi t ional  
symmetry  that arises when the two Patterson 

* The formal restriction on Q is that it cannot relate any element 
of P~ to any element of P2 by a similarity transformation, 'S 
Q-~(JT)Q. 
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Fig. 3. Partitioning of rotation space in a section of constant /3 
(=90 °) for a rotation function between Patterson functions with 
tetrahedral cubic (n = 12) and C3 (m = 3) symmetries. Of the 36 
asymmetric regions, 24 are visible in this section. The generating 
matrix Q (see text) corresponds to the Eulerian angles 
(30, 30, 30°). 



T. O. YEATES 141 

functions being compared are identical. If P~ = P2, 

F ( R ) = F ( R - ' ) .  (14) 

This introduces a twofold increase in symmetry and 
a related set of Dirichlet points must be included, 

[ 'SQ('S)]- '=( 'W)- '  = ( ' W )  T. (15) 

These ( ivJ ) r  and the original ivJ lead to 2n 2 asym- 

metric domains. 

Concluding remarks 

A rotation function between two Patterson functions 
with arbitrarily high symmetry can be divided easily 
into unique or asymmetric regions by an approach 
based on Dirichlet domains. If the rotational- 
symmetry groups of the two Patterson functions are 
of order n and m then rotation space is partitioned 
into n × m equivalent domains; for a self-rotation 
function, the number of equivalent domains is 2n 2. 
The generality of the method makes it applicable to 
cubic space groups, for which the problem of the 
rotation-function asymmetric unit was previously 
unsolved. Because the analysis is cast in terms of 
rotation matrices, it is independent of the particular 

choice of Eulerian-angle conventions. For example, 
two programs using different angle conventions can 
be made to refer to the same asymmetric region of 
rotation space. The method also applies to point- 
group symmetries that are not crystallographic (e.g. 
icosahedral) and generalizes to rotations in higher- 
dimensional space. 

This work was supported by USPHS grant 
GM31299 and NSF award DMB-9158602. 
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Abstract 

A method is described for the refinement of modu- 
lated structures from a combined set of single-crystal 
and powder diffraction data or from powder data 
only. The method is especially useful when informa- 
tion on light atoms is to be obtained and no single 
crystals of suitable size for neutron diffraction are 
available. The program in which the method is 
encoded allows for differences in composition 
between the single-crystal and powder samples. 
Application to the incommensurately modulated 
superconductor Bi2Sr2CaCu2Os+y (2212) using pow- 
der neutron and single-crystal X-ray data confirms 
that the oxygen modulation in the Bi-O layer is saw- 
tooth-like, as observed in the preceding study based 
solely on X-ray data [Petricek, Gao, Lee & Coppens 
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(1990). Phys. Rev. B, 42, 387-392], but with improved 
accuracy in the resulting parameters. The extra oxy- 
gen content is explicitly related to the modulation 
model and corresponds to 0.14 (4) per formula unit. 
With the refined site occupancies for the heavy atoms 
and the results of an anomalous-scattering study on 
the bismuth distribution [Coppens, Lee, Gao & Sheu 
(1991). J. Phys. Chem. Solids, 52, 1267-1272], a copper 
valency of 2.31 is obtained for the single-crystal 
sample. The powder value of 2.40 is somewhat less 
reliable as no anomalous-scattering data are available 
for the powder sample. 

Introduction 

The widespread occurrence of incommensurate 
modulations in the high-To superconducting phases 
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